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A study is made of the apparent bond contraction in H + and H 2 which results from molecular vibra- 
tion in the ground or first-excited mode, it being assumed that the positions of the two nuclei can be 
inferred from the positions of the corresponding peaks in the electron density determined by X-rays. 
It appears that a convolution model, in which we suppose that during the vibration the charge cloud 
near a nucleus moves with the nucleus and without change of shape, is good enough for most purposes. 
However, a full Born-Oppenheimer study of the changes in this charge cloud during vibration leads to 
bond contraction in the ground vibrational state of H + which is about 0.124 a0 instead of a convolution- 
model contraction of 0.096 a0. To get a satisfactory result it is necessary to have good wave functions, 
particularly in the neighbourhood of the nuclei. 

1. Introduction 

Recent very accurate experimental studies (Coppens, 
1970; Dawson, 1970; Coulson, 1970; JSnsson & 
Hamilton, 1970) have shown that the centroid of the 
electronic charge around a given nucleus does not 
always coincide with the position of the nucleus as 
measured by neutron or electron diffraction (Jones & 
Lipscomb, 1969). It is easy to see that, in general, we 
should not expect coincidence of these two positions. 
For if Xt (i=1, 2 , . . .  n) denotes the coordinates 
(spatial r~ and spin sO of the n electrons, and Rj 
( j = l , 2 , . . .  N) the positions o f  the N nuclei, the 
normalized molecular wave functiont is g/(X1, . . .  Xn, 
R1, . . .  R~), leading to an electronic density 

e e:ee (r)=nQ elee (rl) 

~ *  dSl dX2 . . .  dXn dR1 . . .  dR2v (1) ~ n  
o 

and a nuclear density 

~Nu011, . . .  Rat)= I T ~ *  dXl . . .  dXn. 
d 

(2) 

Expression (1) describes the density inferred from X- 
ray measurements, and expression (2) the corresponding 
density inferred from neutron-diffraction measure- 
ments. Both density functions will have distinct peaks 
(assuming that in setting up the wave function we have 
kept the molecular centre of mass at rest); but the 
peaks will not necessarily be in identical positions. 
Thus the bond lengths as deduced by X-ray methods 
will not be quite the same as the bond lengths deduced 
by neutron diffraction. 

In order to see how different effects contribute to 
these bond-length differences it is convenient to adopt 

t For molecular crystals a small elaboration is necessary, 
but we shall disregard this. 

the Born-Oppenheimer approximation for ~. This 
will be quite accurate enough for our purposes, and 
allows us to write, for a diatomic molecule 

~,(x,, . . .  x,,, R ) =  ~R(X:, . . .  X,,) ~0(R) (3) 

where we have used R to denote the internuclear 
distance, which also appears as a parameter in the 
normalized 'electronic wave function' g/R (X:, . . .  Xn). 
The motion of the nuclei, which are supposed to 
oscillate with small amplitude around some equilib- 
rium internuclear separation .Re, is governed by 
(0(R); variations in ~R (X~, . . .  Xn) as R varies will 
then indicate the extent to which the electronic charge 
cloud is itself modified during these vibrations. Since 
we are not concerned with anharmonic effects, we 
shall suppose that ~0(R) is adequately represented by 
an appropriate harmonic-oscillator wave function. 
Later, if we want to do so, we can superpose the an- 
harmonicity variation of ¢p(R). With these assumptions 
the nuclear density distribution (2) takes the form 

enue (R)=~oZ (R) , (4) 

and, for any fixed internuclear separation R, the 
electronic density distribution (1) takes the form 

0~ cc ( r )=n I ~u2 (X1, . . .  X~) dsl dXz, . . .  dX,, . (5) 

Finally, if we allow for the distribution (4) of bond 
length R, we obtain the 'exact' Born-Oppenheimer 
electron density 

f Q~cc (r) (pz (R) dR.  (6) Qel~c (r) 

It is convenient to distinguish properties of the electron 
density which we may label as static and dynamic. By 
static we refer to the character of 0~ ¢¢ (r) when the 
nuclear coordinates are kept fixed at the equilibrium 
value .R =.Re. In such a case we are discussing ,,~i¢¢ (r). ~Re 
By dynamic we refer to those characteristics of O elee (r)  
which are the result of the motion of the nuclei. In 
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such a case our interest lies chiefly in the role of 
~2 (R) in (6). 

The static electron density has already been dis- 
cussed by Coppens & Coulson (1967) and Coulson 
(1970). There it is shown that since electrons engaged 
in the formation of a covalent bond between two 
atoms are preferentially drawn into the region be- 
tween the nuclei, thus leading to a bond-charge, the 
electron density around either nucleus is not symme- 
trical with respect to the nucleus. Thus the centroid 
of the charge associated with either atom lies a little 
distance away from the nucleus in the direction of 
the other atom. The result is an apparent shortening 
of the bond length. Such shortening will necessarily be 
greatest if there are very few inner-shell non-bonding 
electrons, since these latter will be centred around the 
nucleus. This type of X-ray shortening will therefore be 
largest for bonds to a hydrogen atom, where apparent 
contractions of the order of 0.2 .h are known (Hamilton 
& La Placa, 1968; J6nsson & Hamilton, 1970). How- 
ever, when there are lone-pair electrons around an 
atom their condition of orthogonality to the bonding 
electrons will result in a polarization in the opposite 
direction. Coppens & Coulson (1967) showed that 
for a terminal nitrogen atom the lone-pair effect 
was greater than the bond effect, so that now X-ray 
measurements would lead to an apparent increase in 
bond length of about 0.04 A. This fitted well with 
some careful studies of the crystal structure of hexa- 
methylenetetramine (Duckworth, Willis & Pawley, 
1969) where no difference appeared in the X-ray and 
neutron-diffraction determinations of the positions of 
the carbon atoms, but the X-ray determination of the 
positions of the nitrogen atoms placed them 0.018 ,~ 

l P(r 

r 

Fig. 1. Axial charge density in H2 (schematic) (after Coulson, 
1970). - - - - -  static density when R = Re, - . . . . . . .  dynamic 
density taking account of nuclear vibration. The crosses 
mark 'apparent' positions of nuclei. 

further out from the rest of the molecule than did the 
neutron-diffraction measurement. This is clearly due 
to the presence of lone-pair electrons around the ni- 
trogen atom, but not around the carbon atom. 

Our main concern in the rest of this paper will be 
with the dynamic effect that results from the motion of 
the nuclei. We shall consider two ways of dealing with 
this effect. In the first, which we call the convolution 
method, we suppose that the nuclear vibrations are so 
small that the shape of the charge cloud close to 
the nucleus does not change during a vibration. This 
means that we suppose the nucleus to 'carry'  all the 
charge density near it without change of shape. This is 
equivalent to supposing that, in (6), 0~ ec (r) is to be 
given its value when R = Re, and that r is then measured 
relative to the position of the nucleus. Furthermore we 
take for (0(R) the appropriate harmonic-oscillator 
wave function. In the second procedure we introduce 
the correct form of 0,~ lee (r) at all R and then complete 
the integration. The advantage of the first method, 
which is less accurate than the second, is that it is 
easier, and only requires a knowledge of the electronic 
wave function at the equilibrium distance Re. We shall 
show that the error introduced by using this approxi- 
mation is small enough to be unimportant in nearly 
every case. 

In this first study our calculation will be limited to 
H & and H2, in both of which, due to absence of any 
electrons other than those involved in bonding, and to 
the larger amplitude of vibration, we expect larger 
effects than for heavier nuclei; but we hope in a later 
paper to consider other systems. A further reason for 
studying the hydrogen molecule and ion is that a large 
range of calculations of molecular wave functions is 
available, so that we can more easily study the effect 
of good or bad wave functions and more confidently 
pass on to consider more complicated molecules for 
which fewer wave functions are available (and none 
of them as good as the best for hydrogen). In this way 
we can show that the quality of the wave function is 
important, particularly near the nucleus. 

There is one more feature to mention, which is of 
general interest. Since the electron-nuclear attraction 
term in the Hamiltonian is of the form Zx/rk~, where 
rk~ is the distance of electron i from nucleus k, which 
carries charge +Zk,  it follows (Kato, 1957; Steiner, 

Table 1. Molecular constants 

H2 + H2 

Internuclear separation 

Zero-point energy 
Classical amplitude of one nucleus 
(with energy E0) 
Vibration constant 
Orbital exponent 

Bates wave Wang wave 'Natural' 
function function orbital expansion 

Re(a.u.) 2"0 1 '406 1 "4009 
~e(cm- 1 ) 2297 4395 "24 4395 "24 
E0(cm -1) 1133 2227 2227 
A0(a.u.) 0.1602 0.I 1739 0.11739 

y(a.u.) 9.60833 18-3853 18.3853 
- -  1.166 0.995 

The data come from Herzberg (1950) or are computed from data from Herzberg. 
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1963; Bingel, 1967) that there is a cusp at each nucleus. 
At any nucleus the gradient of T is discontinuous. 
For an isolated atom it is obvious that c9~/c9r has 
spherical symmetry. But for an atom in a molecule, 
due to the disturbance of central symmetry, this is no 
longer the case. In the cases of H + and H2 the charge 
density falls off more rapidly on the far side of the 
molecule than between the nuclei. It follows that the 
result of molecular vibration will be to smooth out the 
cusps, and lead to a peak in charge density lying be- 
tween the two nuclei, as is shown schematically in 
Fig. 1, taken from Coulson (1970). The magnitude of 
this effect has never hitherto been calculated; we pre- 
sent the results of such a calculation now. However, it 
should be pointed out that bond shortenings due to 
crystal thermal motion have been calculated by Tomiie 
(1958) for C-H bonds using a convolution approxi- 
mation. 

2. Validity of the convolution apprOximation 

If we adopt the convolution approximation we may 
write equation (6) in the form 

0 e~¢° (r) = f ~Re"~ ( r -  t) ~,2 (t)dt (7) 

We have evaluated tbis integral for H + and for H 2. 
The constants needed for the harmonic-oscillator 
functions (p a re  taken from Herzberg (1950), and are 
summarized in Table 1. In these calculations we con- 
sider only the lowest (zero-point) vibrational level. 

In the case of H + we can use effectively accurate 
wave functions by choosing those obtained by Bates, 
Ledsham & Stewart (1953) in terms of spheroidal 
coordinates 2, p .  For the l sa  (10"g) state the wave 
function is 

T~(2,/z) = L(2) M(/t), where 

L0.) =(2  + 1) ~ exp ( -Q2)  gt 
t=0 = \ 2 +  11 

5 

s - - - 0  

(8) 

P2s(/t) is the Legendre polynomial of order 2s, and 
numerical values are provided for the parameters a, Q, 
F2s and gt. In the convolution approximation we 
adopted the value Re=2"0 ao: in the exact Born-Op- 
penheimer approximation we used the parameter 
values tabulated by Bates et aL, and interpolated for 
the internuclear distances needed by a six-point Le- 
gendre formula. The results are shown in Fig. 2, which 
also shows the static density ,,¢~C(r) The difference 

~ R  e \ . • 

between the convolution curve and the exact curve is 
small; both are very different from the static curve. 
This diagram shows very clearly how the result of 
molecular vibration is to reduce the maximum density 
and smooth out the cusp. 

For HE we have used a simple Wang (1928) type of 
wave function, where 

FcR={W,(rl) ~b(r2)q-Wb(r~) ~a(r2)}/[2(1-]-- 82)11/2 (9) 

and ~a, ~b are screened hydrogenic orbitals around 
the nuclei A and B, and having the form 

}[Ja=(O~3/701/2 exp ( - co ' a ) .  (10) 

S is the usual overlap integral ~ ~uagsb dz. The orbital 
exponent e varies with internuclear distance. In the 
convolution approximation we took R e =  1"406 an and 
c~=1.166ag1: in the exact Born-Oppenheimer ap, 
proximation we used values of e calculated by one of 
us (Coulson, 1937), and interpolated with a five-point 
Legendre formula. In both the H + and H 2 cases the 
necessary quadratures were performed by a Romberg 
method,, with Richardson extrapolation. The final 
results for H2 are shown in Fig. 3. 

It follows from Figs. 2 and 3 that if an accurate X-ray 
measurement is made of the electron density, and the 
peak values are taken to be the positions of the nuclei, 
there will be an apparent shortening of the bond length. 
For both H + and H 2 this shortening is slightly larger for 
the exact Born-Oppenheimer approximation than for 
the convolution approximation. Thus for H + the two 
shortenings are 0.124 a0 and 0.096 a0. This is of the 
magnitude often supposed to apply to bonds involving 
hydrogen. It is large in relation to the precision now 
available from good X-ray and neutron-diffraction 
experiments. 

a 

~'0-15 ~ , \ 

".x,.. 
O.lO÷ ~N.~ 

• ~%-~,~,~.~ 

.fi" 
Z . / , ,  0"05 * 

• s 

s t 

o o 

Direction of other nu cleus 

-0"  0 0 

r (a. u.) 

Fig. 2. Axial charge density for H2 +. . . . . . . . .  static density 
when R = Re, - -  dynamic density (Born-Oppenheimer 
approximation), - . . . . . . .  dynamic density (convolution ap- 
proximation). 



C. A. C O U L S O N  A N D  M. W. T H O M A S  1357 

3. Dependence of shift on quality of wave function 

In the case of H + we have studied the effect of using 
different vibrational wave functions. In particular we 
have used 

(i) the lowest vibrational mode 
~02(t) = 2((yirc) exp { - @ t  2} (11) 

(ii) the first-excited vibrational mode 

cpz(t)  = 16yV'(y/rc) t 2 exp { - - 4 y t  2} (12) 

(iii) the classical distribution function for the lowest 
vibration (with correct zero-point energy) 

qgz( t )=(I / I~Ao)  { 1 - ( t / A o ) 2 }  -I/2 ( 1 3 )  

2, i 

i '  0 .25 .  \\ 
/)' 

/;' 
./,, 0"20 • 

"' l ,, p(r) 
t 

t 

" 0"15 " / /  
/ 

/ 
/ 

•, 
s" 0"10 j s  S 

,,,. 

0"05 • 

Direction of other nucleus 

-0"  0 

r(a. u.) 

Fig .  3. A x i a l  c h a r g e  d e n s i t y  f o r  H2  - W a n g  w a v e  f u n c t i o n .  
. . . . . . . .  static density when R = R e ,  - - - -  dynamic density 
(Born-Oppenheimer approximation),- . . . . . . .  dynamic den- 
sity (convolution approximation). 

where, in all three cases, t=(R-Re) /2  denotes the 
displacement of any one atom from its mean position. 
Our calculations in §2 suggested that we could reason- 
ably safely use the convolution approximation, and so, 
on account of its simplicity, we have done so. The 
necessary constants A0 and }, are given in Table l, 
and the final results in Fig. 4. 

As would be expected the extent of bond shortening 
increases markedly with increase in vibrational quan- 
tum number. This would imply a temperature effect. 
The actual displacements deduced from Fig. 4 are 
listed in Table 2. It can be seen that the classical 
distribution, by giving greatest weight to the end- 
points of the vibrations, overestimates the bond- 
shortening. 

We turn to neutral H2. The most appropriate wave 
function to use is that of Davidson & Jones (1962), 
who deduced the 'natural orbitals' as eigenfunctions 
of the first-order density matrix derived from the 
fifty-term expansion of Kolos & Roothaan (1960). 
Each such natural orbital is a known linear sum of 
fifteen terms, each of which is of the form (in spher- 
oidal coordinates 2, kt, co) 

2n/d(22 - 1) m/2(1 - - /12)  m/2 exp ( -- ~2) exp (im~o). 

The values of ~ and Re are shown in Table 1. Davidson 
& Jones have shown that ten of these natural orbitals 
lead to a total electron density essentially the same as 
in the full wave function of Kolos & Roothaan. With 
these natural orbitals it is a simple matter to compute 
O~l~c(r~ and hence O~1~C(r). R e  ~, ]' 

Fig. 5 shows the results obtained, in each case 
adopting the convolution approximation. First there is 
the static density '~el~r~ and then the dynamic ~ R  e 1, 
density with the three nuclear distributions (11)-(13) 
similar to those previously used for H +. The dis- 
placements of the maximum values of the density are 
given in Table 2, together with those for H +. 

The curves in Figs. 2-5 allow us to compare the 
results that follow from the use of good or bad quality 
wave functions. Thus, for Hz the Wang function 
leads to a static density which is almost symmetrical 
around each nucleus, and therefore to a bond short- 
ening which is too small. The asymmetry around each 
nucleus is closely connected to the build-up of charge 
in the overlap region between the nuclei. All Heitler- 

Table 2. Displacements of the maximum of the 'static' electron density in the convolution approximation 

The origin is taken at atom a; all shifts are in the direction of atom b; units are a.u. 

Nuclear distribution functions 

Zero-point vibration 
Classical distribution (with zero-point energy) 
First-excited vibration 
Equilibrium distance 

M o l e c u l e  
H2  + H2 

Bates wave Wang wave 
function function 

0-048 (0.096) 0.01 (0.02) 
0"09 (0" 180) 
0"164 (0"328) 
Re = 2"00 Re = 1 "406 

'Natural' 
orbital expansion 

0.04 (0.08) 
0-07 (0 .14)  
0" 120 (0"240) 
Re = 1 "4009 

Note: The figure in brackets is the total change in the internuclear separation. 

A C 27B - 6 
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London type functions tend to underestimate this 
bond charge (Roux, Besnainou & Daudel, 1956). 
This is probably related to the fact that with wave  
function (9) the bond charge has a magnitude 

2S 
1 + S  z gta(r) ~Ub(r)' whereas the corresponding simple 

molecular-orbital function leads to a value 

2 
I + S  ~ a ( r ) ~ ( r ) .  The ratio of these n u m b e r s  is 

s(1 +s) 
(1 + S z) ' with a value about ] for the ground state of 

H2. Thus the Heitler-London wave function leads to 
less asymmetry of the static density, and so to a 
reduced apparent bond shortening. Since the David- 
son-Jones density may be taken to be effectively 
exact, this means that a valence-bond function, while 
giving a better total energy, gives a poorer description 
of bond contraction than does the corresponding 
molecular-orbital function. This is another example of 
the conclusions of Mukherji & Karplus (1963), that 
two approximate wave functions, even if they lead to 
similar (and good) energies, may nevertheless give 
quite different one-electron densities. 

A comparison of the static densities in Figs. 2 and 5 
shows that in Hz the asymmetry at the nucleus is 
nearly as prominent as in Ha + . This seemed to us at 
first to be rather surprising. 

Another initially surprising result is the very un- 
symmetrical shape of the dynamic density Qexee(r) 
shown in Figs. 4 and 5 for the first-excited vibrational 
state. It is almost as if there were a tendency to have 
two peaks and not one around each nucleus. Since 
this situation is found in both the ion and the neutral 
molecule, it is probably not spurious. Indeed its ex- 
planation seems to be that for the first-excited state 
the nuclear distribution function (12) has zero value at 
t=0 ,  and has two peaks on either side at t = t o -  
+(4~,)-1/2. With a completely symmetrical static 
density ,,elect,.a this would naturally lead to two peaks 

~ R  e k = ) 

in the dynamic density; but if the static density is 
markedly asymmetric, as happens with these two 
systems, the peak farthest away from the other nucleus 
is reduced in magnitude, and becomes a broad shoulder 
on the other peak. Confirmation of this comes from 
the agreement between the values of 2t0 and the sepa- 
ration between the peak and the shoulder in Figs. 4 
and 5. For H + the values are both 0.32; and for H2 
the separation is 0.22 to be compared with 2t0=0.23. 
It is interesting to note from Fig. 4 that the classical 
distribution function (13) for the ground state which 
has two peaks at t=  +A0 but a non-zero value at 
R = R e ,  leads to a dynamic density showing only a 
small shoulder on the far side of the nucleus. It is 
clear that in this kind of work it is not sufficiently 
good to use the classical distribution function. We 
must employ the correct quantum-mechanical one. 

4. Conclusions 

Since we have only considered H + and H z it would be 
dangerous to draw any very general conclusions. 
However, since the apparent bond shortening is related 
to the overlap density between the nuclei, the contri- 
bution that comes from the bonding pair of electrons 
is likely to be more important for covalent bonds than 
for largely ionic ones, where, in addition, there will 
usually be a lone-pair effect in the opposite direction. 
We are at present investigating this matter. 

It is clear from our work that the error which results 
from using the convolution model is less than that 
which may arise from inadequate wave functions. It is 
particularly important to have these accurate near the 
nuclei. In this respect there is a close parallel with the 
calcalations of the electric field at a nucleus, and other 
quantum-mechanical mean values involved in mi- 
crowave studies. For if we write the static density near 
a nucleus in the approximate form 

0(r) = A exp ( -  kr) + Br cos 0 exp ( -  k'r) 

the asymmetry is wholly due to the second term, and 
the apparent bond shortening will be roughly pro- 
portional to the coefficient B. But this form of 0(r) 
leads to an electrostatic potential consisting of a 
spherical term proportional to A and a non-spherical 
term proportional to Br cos 0. Thus the electrostatic 
field at the nucleus is also proportional to B, and so 
are mean-values such as (0 cos  O/r2). 

/..- \ ,  
I %', 

/" ".~. 

/ / /  0"05 * 

Direction of other nucleus 

0"~. 5 . . . . . . . . .  04".5 - 0 

r(a. u.) 

Fig. 4. Axial charge density for H2 +. - -  dynamic density, 
lowest vibrational state (quantum theory distribution of R), 
. . . . . . . .  dynamical density, lowest vibrational state (classical 
distribution of R ) , -  . . . . . . .  dynamic density first-excited 
vibrational state (quantum theory distribution of R). 
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In conclusion we should draw attention to a further 
point revealed by our analysis and where the usual 
X-ray techniques may lead to an error in the estimated 
bond lengths. We refer to the atomic scattering factors 
assumed for bonded hydrogen atoms. The electronic 
charge around a hydrogenic nucleus is both contracted 
and polarized. Each of these will affect the scattering 
factors to be used, and render invalid the use of these 
factors as calculated for a non-bonded atom. Stewart, 
Davidson & Simpson (1965) have shown that the first 
of these effects leads to an atomic scattering factor 
larger than that for an isolated hydrogen atom. If the 
isolated form factors are used abnormally low tempe- 
rature factors may be found. These authors computed 
the 'best' spherical electron density around a nucleus 
that would fit the theoretically calculated molecular 

# i 

i 
! I 

040;A:"  

. /  

0"30 + 

0"25 ° 

I p(r) 
0"20 * 

0"15 * 

0"10 * 

0"05 ° 

Di rec t ion  o f  o the r  nucleus 

• P • "f- 1' 4, .t. • • '* 0" 
- -  0 5 

r(a. U.) 

Fig. 5. Axial charge density for H2. - . . . . . . .  static density 
when R= R e ,  - - -  dynamic density, lowest vibrational 
state (quantum theory distribution of R), • . . . . . . .  dynamic 
density, lowest vibrational state (classical distribution of R), 
. . . . . . . .  dynamic density, first-excited vibrational state 
(quantum theory distribution of R). 

charge density. They used this to infer the corre- 
sponding form factor, and deduced an apparent 
displacement of the nuclei into the bond for a non- 
vibrating hydrogen molecule amounting to 0.14 A. 
They did not, however discuss the effect of electronic 
asymmetry: in this respect the only calculations of 
which we are aware are those of McWeeny (1951, 1952, 
1953, 1954) who considered the asymmetry resulting 
from hybridizing action among atomic s andp orbitals. 
In our present calculations of course both the contrac- 
tion and polarization effects are implicitly taken 
account of in the use of accurate wave functions. 

One of us (M. W. T.) would like to thank Shell 
Canada for their generous financial grant. 
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