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The Effect of Molecular Vibrations on Apparent Bond Lengths
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A study is made of the apparent bond contraction in H and H, which results from molecular vibra-
tion in the ground or first-excited mode, it being assumed that the positions of the two nuclei can be
inferred from the positions of the corresponding peaks in the electron density determined by X-rays.
It appears that a convolution model, in which we suppose that during the vibration the charge cloud
near a nucleus moves with the nucleus and without change of shape, is good enough for most purposes.
However, a full Born-Oppenheimer study of the changes in this charge cloud during vibration leads to
bond contraction in the ground vibrational state of H which is about 0-124 ao instead of a convolution-
model contraction of 0-096 ao. To get a satisfactory result it is necessary to have good wave functions,

particularly in the neighbourhood of the nuclei.

1. Introduction

Recent very accurate experimental studies (Coppens,
1970; Dawson, 1970; Coulson, 1970; Jonsson &
Hamilton, 1970) have shown that the centroid of the
electronic charge around a given nucleus does not
always coincide with the position of the nucleus as
measured by neutron or electron diffraction (Jones &
Lipscomb, 1969). It is easy to see that, in general, we
should not expect coincidence of these two positions.
For if X; (i=1,2,...n) denotes the coordinates
(spatial r; and spin s;) of the » electrons, and R;
(j=1,2, ... N) the positions of the N nuclei, the
normalized molecular wave functiont is (X, ...Xy,
Ry, ... Rx), leading to an electronic density

Qelec (r) =nQelec (rl)

=nS P+ ds, dX, ... dX, dR, ... dRy (1)
and a nuclear density
oMU Ry, ... Ry)= S P dx, ... dX,. Q)

Expression (1) describes the density inferred from X-
ray measurements, and expression (2) the corresponding
density inferred from neutron-diffraction measure-
ments. Both density functions will have distinct peaks
(assuming that in setting up the wave function we have
kept the molecular centre of mass at rest); but the
peaks will not necessarily be in identical positions.
Thus the bond lengths as deduced by X-ray methods
will not be quite the same as the bond lengths deduced
by neutron diffraction.

In order to see how different effects contribute to
these bond-length differences it is convenient to adopt

T For molecular crystals a small elaboration is necessary,
but we shall disregard this.

the Born-Oppenheimer approximation for ¥. This
will be quite accurate enough for our purposes, and
allows us to write, for a diatomic molecule

PXy, ... X, R)=Pr(Xy, ... X0)0(R)  (3)

where we have used R to denote the internuclear
distance, which also appears as a parameter in the
normalized ‘electronic wave function” Y& (Xy, ... Xp).
The motion of the nuclei, which are supposed to
oscillate with small amplitude around some equilib-
rium internuclear separation R,, is governed by
@(R); variations in ¥r (Xi, ... Xy) as R varies will
then indicate the extent to which the electronic charge
cloud is itself modified during these vibrations. Since
we are not concerned with anharmonic effects, we
shall suppose that ¢(R) is adequately represented by
an appropriate harmonic-oscillator wave function.
Later, if we want to do so, we can superpose the an-
harmonicity variation of ¢(R). With these assumptions
the nuclear density distribution (2) takes the form

oMe (R)=¢?(R), )

and, for any fixed internuclear separation R, the
electronic density distribution (1) takes the form

oslee (r)=nS P2 (X,, ... X2)ds, dXs, ... dX, . (5)
Finally, if we allow for the distribution (4) of bond

length R, we obtain the ‘exact’ Born—Oppenheimer
electron density

g% ()= S 0% (1) 92 (R) dR. ©)

It is convenient to distinguish properties of the electron
density which we may label as static and dynamic. By
static we refer to the character of o%°¢(r) when the
nuclear coordinates are kept fixed at the equilibrium
value R= R,. In such a case we are discussing 0§ (r).
By dynamic we refer to those characteristics of gele¢ (r)
which are the result of the motion of the nuclei. In
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such a case our interest lies chiefly in the role of
02 (R) in (6).

The static electron density has already been dis-
cussed by Coppens & Coulson (1967) and Coulson
(1970). There it is shown that since electrons engaged
in the formation of a covalent bond between two
atoms are preferentially drawn into the region be-
tween the nuclei, thus leading to a bond-charge, the
electron density around either nucleus is not symme-
trical with respect to the nucleus. Thus the centroid
of the charge associated with either atom lies a little
distance away from the nucleus in the direction of
the other atom. The result is an apparent shortening
of the bond length. Such shortening will necessarily be
greatest if there are very few inner-shell non-bonding
electrons, since these latter will be centred around the
nucleus. This type of X-ray shortening will therefore be
largest for bonds to a hydrogen atom, where apparent
contractions of the order of 0-2 A are known (Hamilton
& La Placa, 1968; Jonsson & Hamilton, 1970). How-
ever, when there are lone-pair electrons around an
atom their condition of orthogonality to the bonding
electrons will result in a polarization in the opposite
direction. Coppens & Coulson (1967) showed that
for a terminal nitrogen atom the lone-pair effect
was greater than the bond effect, so that now X-ray
measurements would lead to an apparent increase in
bond length of about 0-04 A. This fitted well with
some careful studies of the crystal structure of hexa-
methylenetetramine (Duckworth, Willis & Pawley,
1969) where no difference appeared in the X-ray and
neutron-diffraction determinations of the positions of
the carbon atoms, but the X-ray determination of the
positions of the nitrogen atoms placed them 0-018 A
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Fig. 1. Axial charge density in H> (schematic) (after Coulson,
1970). ——— static density when R=R,, -------- dynamic
density taking account of nuclear vibration. The crosses
mark ‘apparent’ positions of nuclei.
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further out from the rest of the molecule than did the
neutron-diffraction measurement. This is clearly due
to the presence of lone-pair electrons around the ni-
trogen atom, but not around the carbon atom.

Our main concern in the rest of this paper will be
with the dynamic effect that results from the motion of
the nuclei. We shall consider two ways of dealing with
this effect. In the first, which we call the convolution
method, we suppose that the nuclear vibrations are so
small that the shape of the charge cloud close to
the nucleus does not change during a vibration. This
means that we suppose the nucleus to ‘carry’ all the
charge density near it without change of shape. This is
equivalent to supposing that, in (6), g% (r) is to be
given its value when R= R, and that r is then measured
relative to the position of the nucleus. Furthermore we
take for ¢(R) the appropriate harmonic-oscillator
wave function. In the second procedure we introduce
the correct form of g§¢® (r) at all R and then complete
the integration. The advantage of the first method,
which is less accurate than the second, is that it is
easier, and only requires a knowledge of the electronic
wave function at the equilibrium distance R,. We shall
show that the error introduced by using this approxi-
mation is small enough to be unimportant in nearly
every case.

In this first study our calculation will be limited to
H3} and H,, in both of which, due to absence of any
electrons other than those involved in bonding, and to
the larger amplitude of vibration, we expect larger
effects than for heavier nuclei; but we hope in a later
paper to consider other systems. A further reason for
studying the hydrogen molecule and ion is that a large
range of calculations of molecular wave functions is
available, so that we can more easily study the effect
of good or bad wave functions and more confidently
pass on to consider more complicated molecules for
which fewer wave functions are available (and none
of them as good as the best for hydrogen). In this way
we can show that the quality of the wave function is
important, particularly near the nucleus.

There is one more feature to mention, which is of
general interest. Since the electron-nuclear attraction
term in the Hamiltonian is of the form Zy/ry;, where
r: 1s the distance of electron i from nucleus k, which
carries charge + Zy, it follows (Kato, 1957; Steiner,

Table 1. Molecular constants

H,* H:
Bates wave Wang wave ‘Natural’
function function orbital expansion
Internuclear separation Re(a.u.) 2:0 1-406 1-4009
welcm™1) 2297 4395-24 439524

Zero-point energy Ep(cm~1) 1133 2227 2227
Classical amplitude of one nucleus  Agp(a.u.) 0-1602 0-11739 0-11739
(with energy Eyp)
Vibration constant y(a.u.) 9-60833 18-3853 18:3853
Orbital exponent o — 1-166 0-995

The data come from Herzberg (1950) or are computed from data from Herzberg.



1356

1963; Bingel, 1967) that there is a cusp at each nucleus.
At any nucleus the gradient of ¥ is discontinuous.
For an isolated atom it is obvious that d¥/dr has
spherical symmetry. But for an atom in a molecule,
due to the disturbance of central symmetry, this is no
longer the case. In the cases of H3 and H, the charge
density falls off more rapidly on the far side of the
molecule than between the nuclei. It follows that the
result of molecular vibration will be to smooth out the
cusps, and lead to a peak in charge density lying be-
tween the two nuclei, as is shown schematically in
Fig. 1, taken from Coulson (1970). The magnitude of
this effect has never hitherto been calculated; we pre-
sent the results of such a calculation now. However, it
should be pointed out that bond shortenings due to
crystal thermal motion have been calculated by Tomiie
(1958) for C-H bonds using a convolution approxi-
mation.

2. Validity of the convolution approximation

If we adopt the convolution approximation we may
write equation (6) in the form

0% (1) = S 05 (r—t) 2 (f)dt 7

We have evaluated this integral for Hf and for H,.
The constants needed for the harmonic-oscillator
functions ¢ are taken from Herzberg (1950), and are
summarized in Table 1. In these calculations we con-
sider only the lowest (zero-point) vibrational level.

In the case of H} we can use effectively accurate
wave functions by choosing those obtained by Bates,
Ledsham & Stewart (1953) in terms of spheroidal
coordinates A, u. For the 1so (lgg) state the wave
function is

¥ (4, ) =L(2) M(y), where ,

L(A)  =@+1)yexp(—od) _Zog.‘ (%)‘

5
M(p) = ZOF 2sPas() - @)

P,s(n) is the Legendre polynomial of order 2s, and
numerical values are provided for the parameters o, o,
F,s and g;. In the convolution approximation we
adopted the value R,=2'0 a,: in the exact Born—-Op-
penheimer approximation we used the parameter
values tabulated by Bates et al., and interpolated for
the internuclear distances needed by a six-point Le-
gendre formula. The results are shown in Fig. 2, which
also shows the static density o%°(r). The difference
between the convolution curve and the exact curve is
small; both are very different from the static curve.
This diagram shows very clearly how the result of
molecular vibration is to reduce the maximum density
and smooth out the cusp.

For H, we have used a simple Wang (1928) type of
wave function, where

EFFECT OF MOLECULAR VIBRATIONS ON APPARENT BOND LENGTHS

Yr={Wu(r)) Po(ry)+ ¥u(ry) Palr)}/[2(1+ S22 (9)

and ¥,, ¥p are screened hydrogenic orbitals around
the nuclei 4 and B, and having the form
o= (03/m)V2 exp (—arq) . (10)
S is the usual overlap integral §¥,¥, dz. The orbital
exponent o varies with internuclear distance. In the
convolution approximation we took R.=1-406 a, and
a=1-166 az’!: in the exact Born-Oppenheimer ap-
proximation we used values of « calculated by one of
us (Coulson, 1937), and interpolated with a five-point
Legendre formula. In both the HF and H, cases the
necessary quadratures were performed by a Romberg
method,, with Richardson extrapolation. The final
results for H, are shown in Fig. 3.
1t follows from Figs. 2 and 3 thatifan accurate X-ray
measurement is made of the electron density, and the
peak values are taken to be the positions of the nuclei,
there will be an apparent shortening of the bond length.
For both H3 and H, this shortening is slightly larger for
the exact Born—-Oppenheimer approximation than for
the convolution approximation. Thus for H3 the two
shortenings are 0-124 gy and 0-096 aq,. This is of the
magnitude often supposed to apply to bonds involving
hydrogen. It is large in relation to the precision now
available from good X-ray and neutron-diffraction
experiments.

/":' 005 +
N
Direction of other nucleus
- * + - ¢ * -*
Y- A 05
r(a.u.)
Fig. 2. Axial charge density for Hp*. -------- static density
when I€_=R?, dynamic density (Born—-Oppenheimer
approximation), -«-.-«~. dynamic density (convolution ap-

proximation).
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3. Dependence of shift on quality of wave function

In the case of HF we have studied the effect of using
different vibrational wave functions. In particular we
have used

(i) the lowest vibrational mode

(1) =2y (y/n) exp { -4t} (11)
(ii) the first-excited vibrational mode
(1) =16y (y/m) 1> exp {—4yt?} (12)

(iii) the classical distribution function for the lowest
vibration (with correct zero-point energy)

p(1)=(1/nAo) {1 —(1/ A0}~/ (13)
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Fig. 3. Axial charge density for H, - Wang wave function.
-------- static density when R= R,, —— dynamic density
(Born-Oppenheimer approximation),---+---. dynamic den-
sity (convolution approximation).
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where, in all three cases, 1=(R—R.)/2 denotes the
displacement of any one atom from its mean position.
Our calculations in §2 suggested that we could reason-
ably safely use the convolution approximation, and so,
on account of its simplicity, we have done so. The
necessary constants 4, and y are given in Table I,

and the final results in Fig. 4.

As would be expected the extent of bond shortemng
increases markedly with increase in vibrational quan-
tum number. This would imply a temperature effect.
The actual displacements deduced from Fig. 4 are
listed in Table 2. It can be seen that the classical
distribution, by giving greatest weight to the end-
points of the vibrations, overestimates the bond-
shortening.

We turn to neutral H,. The most appropriate wave
function to use is that of Davidson & Jones (1962),
who deduced the ‘natural orbitals’ as eigenfunctions
of the first-order density matrix derived from the
fifty-term expansion of Kolos & Roothaan (1960).
Each such natural orbital is a known linear sum of
fifteen terms, each of which is of the form (in spher-
oidal coordinates A, u, ¢)

A (A2 — 1) 2(1 — p2)™ /2 exp (—ad) exp (img) .

The values of « and R, are shown in Table 1. Davidson
& Jones have shown that ten of these natural orbitals
lead to a total electron density essentially the same as
in the full wave function of Kolos & Roothaan. With
these natural orbitals it is a simple matter to compute
0%e(r), and hence g¢'*°(r).

Fig. 5 shows the results obtained, in each case
adopting the convolution approximation. First there is
the static density o%¢°r), and then the dynamic
density with the three ‘nuclear distributions (11)-(13)
similar to those previously used for Hi. The dis-
placements of the maximum values of the density are
given in Table 2, together with those for Hj.

The curves in Figs. 2-5 allow us to compare the
results that follow from the use of good or bad quality
wave functions, Thus, for H, the Wang function
leads to a static density which is almost symmetrical
around each nucleus, and therefore to a bond short-
ening which is too small. The asymmetry around each
nucleus is closely connected to the build-up of charge
in the overlap region between the nuclei. All Heitler—

Table 2. Displacements of the maximum of the ‘static’ electron density in the convolution approximation

The origin is taken at atom a; all shifts are in the direction of atom b; units are a.u.

Nuclear distribution functions

Zero-point vibration

Classical distribution (with zero-point energy)
First-excited vibration

Equilibrium distance

Molecule
Ho* H;
Bates wave Wang wave ‘Natural’
function function orbital expansion
0-048 (0-096) 0-01 (0-02) 0-04 (0-08)
0-09 (0-180) — 0-07 (0-14)
0-164 (0-328) — 0-120 (0-240)
Re=2-00 R.=1-406 R.=1-4009

Note: The figure in brackets is the total change in the internuclear separation.

AC2IB-6
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London type functions tend to underestimate this
bond charge (Roux, Besnainou & Daudel, 1956).
This is probably related to the fact that with wave
function (9) the bond charge has a magnitude

25
1+82
molecular-orbital function leads to a value

2
1+8
S(1+.S)

(1+8?

Y,(r) ¥u(r), whereas the corresponding simple

Yu(x) Pu(r). The ratio of these numbers is

, with a value about % for the ground state of

H,. Thus the Heitler—London wave function leads to
less asymmetry of the static density, and so to a
reduced apparent bond shortening. Since the David-
son-Jones density may be taken to be effectively
exact, this means that a valence-bond function, while
giving a better total energy, gives a poorer description
of bond contraction than does the corresponding
molecular-orbital function. This is another example of
the conclusions of Mukherji & Karplus (1963), that
two approximate wave functions, even if they lead to
similar (and good) energies, may nevertheless give
quite different one-electron densities.

A comparison of the static densities in Figs. 2and 5
shows that in H, the asymmetry at the nucleus is
nearly as prominent as in Hi. This seemed to us at
first to be rather surprising.

Another initially surprising result is the very un-
symmetrical shape of the dynamic density gele¢(r)
shown in Figs. 4 and 5 for the first-excited vibrational
state. It is almost as if there were a tendency to have
two peaks and not one around each nucleus. Since
this situation is found in both the ion and the neutral
molecule, it is probably not spurious. Indeed its ex-
planation seems to be that for the first-excited state
the nuclear distribution function (12) has zero value at
t=0, and has two peaks on either side at r=f=
+(4y)-t2, With a completely symmetrical static
density 0%e(r) this would naturally lead to two peaks
in the dynamic density; but if the static density is
markedly asymmetric, as happens with these two
systems, the peak farthest away from the other nucleus
is reduced in magnitude, and becomes a broad shoulder
on the other peak. Confirmation of this comes from
the agreement between the values of 2y and the sepa-
ration between the peak and the shoulder in Figs. 4
and 5. For Hi the values are both 0-32; and for H,
the separation is 0-22 to be compared with 2z,=0-23,
It is interesting to note from Fig. 4 that the classical
distribution function (13) for the ground state which
has two peaks at r= + A4, but a non-zero value at
R=R,, leads to a dynamic density showing only a
small shoulder on the far side of the nucleus. It is
clear that in this kind of work it is not sufficiently
good to use the classical distribution function. We
must employ the correct quantum-mechanical one.

EFFECT OF MOLECULAR VIBRATIONS ON APPARENT BOND LENGTHS

4. Conclusions

Since we have only considered H3 and H, it would be
dangerous to draw any very general conclusions.
However, since the apparent bond shortening is related
to the overlap density between the nuclei, the contri-
bution that comes from the bonding pair of electrons
is likely to be more important for covalent bonds than
for largely ionic ones, where, in addition, there will
usually be a lone-pair effect in the opposite direction.
We are at present investigating this matter.

It is clear from our work that the error which results
from using the convolution model is less than that
which may arise from inadequate wave functions. It is
particularly important to have these accurate near the
nuclei. In this respect there is a close parallel with the
calculations of the electric field at a nucleus, and other
quantum-mechanical mean values involved in mi-
crowave studies. For if we write the static density near
a nucleus in the approximate form

o(r)=A exp (—kr)+ Br cos @ exp (—k'r)

the asymmetry is wholly due to the second term, and
the apparent bond shortening will be roughly pro-
portional to the coefficient B. But this form of o(r)
leads to an electrostatic potential consisting of a
spherical term proportional to 4 and a non-spherical
term proportional to Br cos 6. Thus the electrostatic
field at the nucleus is also proportional to B, and so
are mean-values such as (g cos 8/r2).

015

Direction of other nucleus

+ - + -
—-05 0 05

r(a.u.)

Fig. 4. Axial charge density for H*. dynamic density,
lowest vibrational state (quantum theory distribution of R),
------- dynamical densnty, lowest vibrational state (classical
dlstrlbutlon of R), --.----. dynamic density first-excited
vibrational state (quantum theory distribution of R).
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In conclusion we should draw attention to a further
point revealed by our analysis and where the usual
X-ray techniques may lead to an error in the estimated
bond lengths. We refer to the atomic scattering factors
assumed for bonded hydrogen atoms. The electronic
charge around a hydrogenic nucleus is both contracted
and polarized. Each of these will affect the scattering
factors to be used, and render invalid the use of these
factors as calculated for a non-bonded atom. Stewart,
Davidson & Simpson (1965) have shown that the first
of these effects leads to an atomic scattering factor
larger than that for an isolated hydrogen atom. If the
isolated form factors are used abnormally low tempe-
rature factors may be found. These authors computed
the ‘best’ spherical electron density around a nucleus
that would fit the theoretically calculated molecular
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Direction of other nucleus
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Fig. 5. Axial charge density for Hj. -------- static density
when R=R., — dynamic density, lowest vibrational
state (quantum theory distribution of R), + -+ - dynamic
density, lowest vibrational state (classical distribution of R),

dynamic density, first-excited vibrational state

(quantum theory distribution of R).
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charge density. They used this to infer the corre-
sponding form factor, and deduced an apparent
displacement of the nuclei into the bond for a non-
vibrating hydrogen molecule amounting to 0-14 A.
They did not, however discuss the effect of electronic
asymmetry: in this respect the only calculations of
which we are aware are those of McWeeny (1951, 1952,
1953, 1954) who considered the asymmetry resulting
from hybridizing action among atomic s and p orbitals.
In our present calculations of course both the contrac-
tion and polarization effects are implicitly taken
account of in the use of accurate wave functions.

One of us (M. W. T.) would like to thank Shell
Canada for their generous financial grant.
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